
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract 
 

Server virtualization is at present one of the major topics of the IT environment. Today, 
modern hardware is often so powerful that it is not run to full capacity by a single software 
application. Virtualization is ideal for old software solutions, particularly where old hardware 
is replaced. 

In addition to established solutions from VMware und Microsoft, XEN, an »Open 
Source« implementation, is regarded as sufficiently mature for productive deployment 
and has become an integral part of the most important Linux distributions. 

This document looks at the use of XEN on Novell SUSE Linux Enterprise 10 SP1 and 
attempts to make recommendations for practical use and to forecast performance data. 
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Introduction 

The subject of server consolidation is one of the principal topics when it comes to saving costs in the IT 
environment. A better and more effective server workload as well as a reduction in the number of servers are 
called for. Nowadays individual applications are allocated to a dedicated server so as to prevent any 
reciprocal interference. Therefore, with a large number of applications the number of servers in a data center 
also increases. As a result of this allocation the available computing performance frequently lies idle because 
the individual applications do not utilize the server to the full. 

Using virtualization enables several virtual servers to be consolidated on a single physical server. Thus the 
use of virtual machines even enables several different operating systems, e.g. various Linux derivates or 
Windows versions, to be run in parallel on the same physical server. 

A further advantage of virtual servers is the possibility of operating legacy systems or existing applications 
together with their environments in virtual machines. 

Currently available on the market are various popular virtualization products for Intel-based servers, this 
document concentrates primarily on XEN 3.0.4 with SUSE Enterprise Linux 10 SP1 as the host operating 
system. 

What is a virtual server? 

Virtualization is a technology that allows several operating 
systems to be run on a single physical server at the same time. 
Virtualization can be realized with the help of hardware or 
software. In the case of software-based virtualization a 
virtualization program is used to insert an additional layer, the 
so-called virtualization layer, on the physical server between the 
actual system resources and the virtual servers, also known as 
virtual machines. The hardware of the physical server is made 
available to the virtual servers in a suitable form via the interface 
of the virtualization layer. In this way, the virtual machines can 
be fully separated and isolated from each other. 

Hardware resources - emphasis here is always placed on the 
four core components CPU, memory, network and disk 
resources - are mapped in every virtual machine. Each access of a virtual machine to and from the physical 
hardware of the host server passes through the virtualization layer. 

As a means of distinguishing the servers, the physical server is also denoted as the »host« and the 
virtualization layer as the hypervisor (and also as »Virtual Machine Monitor«/VMM), on which the virtual 
servers, also known as virtual machines (VM), run with their guest operating systems. The virtualization layer 
completely separates the virtual machines from the host hardware and its hardware/driver dependencies. In 
such a configuration it is possible, for example, to run a virtual server which has been created on a 
PRIMERGY RX300 S4, on a PRIMERGY RX600 S4. 

The volume of hardware resources of the virtual machine can frequently be changed manually using the 
virtualization program. In this way, it is possible to change CPU resources during ongoing operations. 
Depending on the requirements of the virtual machines they can be allocated more or less CPU time. 

Each virtual machine must be seen as a separate server, which can in turn be run on the host fully 
independently of the other virtual machines. The virtual machines are isolated from each other to the effect 
that data security is ensured even with business-critical and confidential data. 

Virtual machines (VMs) can in the simplest case consist only of a configuration file, a disk file and a log file, 
which makes it relatively easy for the administrator to back them up. 
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Typical virtualization architectures 

In principle, there are four types of virtualization techniques, which enable one or more virtual servers to be 
run on a shared, physical hardware platform. 

Type 1: 

In the first variant an operating system is installed on a physical 
server, upon which a virtualization program is positioned. 
Consequently, a virtualization layer is added to the operating 
system, on top of which the virtual machine is positioned. Every 
CPU, disk, memory or network access must pass through this 
layer. The diagram on the right shows the basic structure. 

The advantage of this type of virtualization is that in addition to 
the virtual server other applications can be run on the host 
operating system, as shown in the figure on the left.  

In this way, 
applications can be 
run on a physical server in parallel with the virtual server. The 
disadvantage of such a virtualization solution is the actual 
overhead of the host operating system. The host server runs 
system services, which need resources that are only required to 
operate the applications, and not to operate the virtual 
machines. The performance of the virtual machines is 
consequently reduced. 

All hardware accesses to and from the virtual machine must 
pass through the virtualization layer and the host operating 
system. 

 
 
Type 2: 

The second variant actually does not use a host 
operating system, as is the case with virtualization type 
1, but already implements all the functions directly 
required for virtualization in the virtualization layer. 
Since this also includes control of the I/O devices, the 
virtualization layer must also implement the necessary 
drivers or at least provide a general interface, via which 
third-party drivers can be integrated. 

A special auxiliary operating system (»Console OS«), 
the scope of which has been reduced to the 
functionality genuinely required, is used for the 
administration of the system. The auxiliary operating 
system itself can already be seen as a VM with a 
special status, thus it can have e.g. very direct access 
to the I/O devices. 

The advantage of such a virtualization solution is that it is not burdened with the overhead of a host 
operating system, and hardware access to and from the virtual machine only has to pass through one layer, 
the virtualization layer. For example, the VMware ESX Server is based on this concept and uses a specially 
adapted Linux version both as the basis for the virtualization layer and for the auxiliary operating system. 
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Type 3: 

The third variant is the most straightforward 
implementation. In principle it is very similar to the 
second variant, in that it also provides all the functions 
directly required for virtualization, including I/O control, 
itself. In contrast to the second variant, however, merely 
administration interfaces and no administration 
functions/programs are provided directly on the system. 
As a result, the console operating system is no longer 
applicable, as is the resource consumption it causes. 
The administration functionalities also required with this 
variant must be provided by an external system. 
Virtualization solutions that are based on this principle 
can be so compact that they can in fact already be 
provided by the firmware of a system. One example worth mentioning for such a solution would be the 
VMware ESX Server 3i. 

 
Type 4: 

The fourth variant refers to both variant 1 and variant 2. As with 
variant 1, a fully fledged host operating system is used to 
perform all hardware accesses. However, this host operating 
system already runs under the supervision of the hypervisor 
(refer to variant 2), but compared with conventional VMs it has 
the privilege of being able to access the hardware directly. The 
I/O operations of the conventional VMs are not performed by the 
hypervisor, but by this host operating system. The advantage of 
this approach can be seen in the fact that the hypervisor can not 
only be implemented in a compact way here, but has, as in the 
second variant, full control over the host system and can in this 
way - at least with regard to CPU and memory resources - avoid 
the overhead caused by a regular host operating system. 
However, with regard to I/O activities the overhead not only continues to exist, but can - depending on the 
architecture of the host operating system - be even higher than in variant 1. In order to avoid this overhead 
hypervisors, such as XEN, provide the possibility for individual HW controllers, such as a PCI card, to be 
allocated to an individual VM on a dedicated basis. Consequently, very fast access from the VM is possible, 
but this is paid for with the disadvantage that only one VM can access this HW at the same time. Moreover, 
HW independence is no longer given, therefore such a VM can no longer easily »move« to another HW 
platform. 

Since the host operating system analog to variant 1 can be a fully fledged operating system, it is in principle 
here also possible to provide further server services in addition to the actual virtualization functionality. 
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General overview of XEN 

XEN is virtualization software that has in the 
meantime become a part of many Linux 
distributions. Although XEN, similar e.g. to 
the VMware server, can be regarded as an 
add-on to a standard operating system, it 
nevertheless implements an independent 
virtualization form of type 4. The decisive 
difference to a virtualization solution of type 1 
can be seen in the fact that XEN in principle 
also virtualizes the host operating system 
and thus actually degrades the latter to an 
auxiliary operating system. However, 
compared with a regular VM, the VM of the 
host operating system has a privileged 
status, which allows it e.g. to access the 
hardware directly. This is necessary because 
the privileged VM is used by the conventional 
VMs as a kind of »proxy« for their I/O 
operations. The device drivers in the VMs are denoted in the diagram as front-end drivers. The I/O requests 
are sent by the front-end drivers to the back-end drivers in the privileged VM, which pass the requests to 
their own native drivers. 

All the VMs are denoted in XEN as »Domain« or »Dom« for short and are numbered consecutively 
beginning with 0. The privileged status of the VM of the host operating system is also expressed in the 
naming convention for this VM. The latter defines »Dom0« as the name for the VM of the host operating 
system, whereas all other VMs are denoted with the generic term »DomU«. Since practically each 
virtualization solution defines its own terms, the far more conventional abbreviation »VM« is used in this 
document instead of »DomU«. On the other hand, the name »Dom0« is also used below, because none of 
the other virtualization solutions stated here has an appropriate equivalent. 

In comparison with other virtualization solutions, the functional scope of the XEN hypervisor is reduced to 
controlling CPU and memory resources as well as handling asynchronous events (e.g. interrupts). It also 
controls the scheduling of the VMs, without influencing the scheduling within the VMs. 

Virtualization forms 

Due to the history of their development in the pre-virtualization era the classic x86/x64 processors have 
various characteristics (particularly in the privileges for CPU instructions and in memory management), which 
make virtualization considerably more difficult. Today's virtualization solutions have to avoid these deficits in 
a complex way with software. Several virtualization concepts exist for this purpose. 
 

Para-virtualization is a form of virtualization, in which the operating system of the VM »knows« that it is 
virtualized. It supports virtualization by only using the CPU in such a way that it can be virtualized without 
any problems. This calls for modifications in the operating system kernel and in the device drivers. 
Virtualization support through the processor (Intel-VT [L4] / AMD-V [L5]) is not necessary in this form of 
virtualization and does not entail any advantage. Para-virtualization is at present the form of virtualization 
which has by far the lowest overhead and thus also the smallest losses in performance compared with a 
native operating system. Accordingly, the Dom0 is based on this form of virtualization in XEN, because it 
must perform all the I/O operations in an acting capacity for the DomU VMs. 
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http://www.intel.com/technology/platform-technology/virtualization/index.htm
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8796_14287,00.html
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With so-called full virtualization the OS of the VM can remain unchanged. The problem mentioned at the 
outset is resolved by newer x86/x64 processors with extensions (Intel-VT [L4] / AMD-V [L5]) that can be used 
by the hypervisor. Since no OS modifications are necessary with this form of virtualization, non-adapted 
operating systems can also be virtualized with it. The primary disadvantage of full virtualization can be seen 
in the fact that it entails on the one hand greater losses in performance than para-virtualization and that 
implementation is very complex despite the innovative processor support. The background to this among 
other things is the fact that with classic full virtualization the most important hardware components of a 
typical computer have to be elaborately emulated in software (»Hardware Emulation« in the diagram on the 
previous page). Generally, losses in performance cannot be avoided here, but can mostly be minimized 
through additional »driver packs«. Through this add-on special, in principle para-virtualized disk and LAN 
drivers are also made available to a fully virtualized VM in order to at least achieve a similar performance for 
low-level activities, as in a para-virtualized VM. 

XEN originally only offered para-virtualization, but full virtualization has also been possible since version 3. 
As all the previously described XEN virtualization variants are considered more closely with regard to their 
performance in this document, the terms listed below are used in the rest of the document for a more 
accurate specification of the form of virtualization: 

VM Specifies a virtual machine in a quite general way, the actual virtualization form does not 
play a role here. 

‘Full’ VM Denotes a fully virtualized VM. 

‘FullEx’ VM Specifies a fully virtualized VM, extended to include the driver pack from Novell as an add-
on for SLES10 [L7] for network and disk IO. 

‘Para’ VM Denotes a para-virtualized VM. 

I/O Structure 

A detailed description of the way in which I/O operations run under XEN would fall outside the scope of this 
document. Therefore, the basic process is only roughly explained here. 

The fundamental I/O concept of XEN is based on the fact that either the Dom0 or a ‘Para’ VM configured as 
a driver domain performs - in an acting capacity for the conventional VMs - the I/O operations that they 
initiated. The SW components that control this procedure are denoted in current literature as »front-end 
device drivers« (initiating VM) and as »back-end device drivers« (Dom0 and driver domain). Ideally, 
communication between the two driver instances takes place via »shared memory« and semaphores in 
order to minimize in this way the actual communication overhead. This is at least possible with ’Para’ VMs 
and, with a certain additional overhead, also with ‘FullEx‘ VMs. Regardless of how quickly actual 
communication is handled, with this concept there will always be the problem that two interdependent 
instances here can really only work in parallel in optimal situations - even on multiprocessor systems. 
Therefore, in addition to the pure communication costs, latency times arise, which result from the scheduling 
of the two instances. A virtualization solution of type 1 or 2 could work in an undoubtedly more 
straightforward way in this regard, because it would always be possible here to trigger the execution of an 
I/O request immediately after its receipt. Prerequisite to this is that the used host operating system provides 
an asynchronously working I/O API. 

With a ‘Full’ VM communication between the back-end and front-end driver is considerably more elaborate, 
because there is no direct communication at all in the actual sense. The front-end driver believes it is 
accessing real hardware and behaves accordingly. The back-end driver is compelled to monitor these 
activities, interpret them logically and perform them in an acting capacity. This is complex and accordingly 
has a decidedly negative impact on performance. 

Not only does communication between the front-end and back-end driver have a decisive influence on 
performance, so does the way in which the Dom0 and the relevant driver domain I/O operations are handled. 

http://www.intel.com/technology/platform-technology/virtualization/index.htm
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8796_14287,00.html
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XEN on the basis of Novell SLES 10 

Novell SUSE Linux Enterprise Server 10 SP1 (hereinafter referred to as SLES10) includes XEN version 
3.0.4 with additional modifications from Novell. Server systems based on x86 architectures are supported 
both in a 32-bit and a 64-bit version. The following applies for guest operating systems: 64-bit operating 
systems can also only be virtualized on 64-bit hardware. It is possible to run both para-virtualized and fully 
virtualized VMs on the same host system; however, full virtualization necessitates a processor with Intel-VT 
or AMD-V extensions. Although the XEN integrated in SLES10 could actually virtualize each guest system 
supported by the XEN community variant, Novell nevertheless limits the list of supported operating systems. 
Since the list of supported guest operating systems is subject to certain dynamics, we refer in this respect to 
the Novell web page http://www.novell.com/products/server/virtualization.html [L6]. 

As a distinguishing feature compared with the competition, Novell offers a chargeable, additional package 
entitled »SUSE Linux Enterprise Virtual Machine Driver Pack«, which also provides para-virtualized disk and 
network card drivers for a number of operating systems as part of full virtualization. The »driver pack« is an 
add-on that can be obtained from the Novell web site http://www.novell.com/products/vmdriverpack [L7]. 

Practical use 
The measurements on which this document is based were not made in accordance with the original SP1 
status. The SLES10 kernel had to be updated to version 2.6.16.53-0.16 and XEN to version 3.0.4_13138-
0.52, as otherwise the measurements would have been impossible on account of various problems. The 
patches are automatically installed for a customer when he enables the YaST2 online update from the Novell 
server by entering the registration code. Alternatively, the patches can be manually downloaded and 
installed (http://support.novell.com/linux/psdb [L8]). 

As the standard measuring system for the virtualization host a PRIMERGY RX300 S3 (2 × Intel Xeon Quad-
Core, 5365, 3 GHz, 16 GB RAM) was used for this document. 

Performance analyses were also performed with the driver pack for Windows 2003 (version 1.1.3-6), as 
performance can be distinctly improved as a result. However, with Windows 2003 SP2 a number of problems 
exist in the VMs as a result of this driver pack, but which can be avoided: 

 If the VM configuration includes a virtual disk (VHD) declared as »hdd«, the consequence of this is 
an endless boot process. Thus, a VHD should never be declared as »hdd«. One consequence of 
this is that in a configuration with three VHDs and a virtual DVD drive the DVD drive would - contrary 
to the normal »hdc« standard - have to be declared as »hdd«. However, on account of the Novell 
driver pack the declaration can also be made as »hde«, as this lifts the limitation of at most four 
virtual disks/DVDs per VM, which normally applies for fully virtualized VMs without a driver pack 
(which Novell unfortunately does not describe in the driver pack documentation). 

 While the operating system in the VM without an installed driver pack allocates ID 0 to the boot HD, 
the latter with an installed driver pack is issued ID 2. All other HDs subsequently follow suit. This is 
not a real problem, more of a minor flaw. However, in this way it is initially not possible with 
programs such as Iometer (see the following section Measurement methods), which expect end-to-
end numbering of the HDs beginning with zero, to access a raw disk at will. This is only possible 
once all HDs, except for the boot HD, have been deinstalled in the Windows Device Manager. As 
part of the subsequently performed hardware rescan the »re-found« HDs are consecutively 
numbered beginning with zero. Consequently, access with Iometer is now possible. 

http://www.novell.com/products/server/virtualization.html
http://www.novell.com/products/vmdriverpack
http://support.novell.com/linux/psdb
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 One effect of the driver pack that arises when a bootable CD or DVD is in the configured DVD drive 
during the booting of a VM is more serious. In such a situation, and depending on the declaration of 
the virtual DVD drive, the disk driver generates one or even two »imaginary HDs« (IHD). Only one 
single IHD is generated with ID 4 for a DVD drive declared as »hdc«. If the declaration is »hdd«, two 
IHDs are generated with the IDs 0 and 5. In both versions the IHDs force themselves between the 
genuinely configured VHDs and thus change their numbering. IHD generation is not just a minor 
flaw, it leads to problems in disk management programs. This is due to the fact that under Windows 
partitions can only be created on HDs on which Windows has already written a unique signature. 
However, such an attempt fails with IHDs. Unfortunately, some programs attempt to repeat this 
process with every program start, which results in considerable waiting. 

With the OS version used the following problem occurs in the Dom0: 

 The »xentop« command reports dubious values in the CPU load of the Dom0 as a result of the I/O 
activities. These values do not correlate with the values of commands, such as »mpstat«, namely to 
the extent that the xentop values are in comparison considerably excessive. No decisive clarification 
could be found as to which command is supplying authentic values. Analyses, which were performed 
to clarify the problems by means of network load between the SLES10 system and a comparable 
Windows counterpart, resulted in values for the Windows system that are in fact close to the 
»mpstat« values. However, on account of the quite different architecture of both operating systems 
this can only be an indication. As a consequence of this problem it is not possible in this document to 
provide any details about the effective system load during a performance measurement. 
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Measurement methods 

This section is to present the measurement methods for performance analysis, the measuring tools used and 
the measurement environments. The respective configuration of the server and storage hardware used, as 
well as the configuration of the native and virtual operating systems are described specific to the 
measurement method. 

Benchmarks 

Since there is no universal tool for the analysis of a complex entity such as a virtual server, various 
benchmark tools are used depending on the purpose. 

Iometer 

Iometer [L9] is an Open-Source measuring tool that is excellently suited for the generation of disk and 
network load on a rather lower system level. Version 2006.07.27 is used. In the Windows environment the 
original download compilation is used, in the Linux environment on the other hand a modified version is 
used. This is due to an error in the query to determine if errors have occurred in the program run and which 
frequently prevents a correct end to a measurement run, especially with multiprocessor configurations. The 
modifications affect the file IOCompletionQ.cpp; where line 308 must be changed as follows: 

if ((cqid->element_list[i].error == 32) || (cqid->element_list[i].error == 104) || (DWORD) * bytes_transferred < (DWORD) 0) { 

This is only a »quick and dirty« solution which has proved to be adequate for regular measurement 
operations. 

 

vServCon 

For measuring server consolidation in virtual environments Fujitsu Technology Solutions has developed the 
benchmark »vServCon« [L11], which is based on »vConsolidate« [L10] from Intel. »vServCon« comprises 
several standard benchmarks. Each of the standard benchmarks is allocated to a dedicated virtual machine 
(VM). These VMs then form a »tile«. Depending on the performance capability of the underlying server 
hardware, you may as part of a measurement also have to start several identical tiles in parallel in order to 
achieve a maximum load. A detailed description of this environment can be found in the document 
»vServCon - Benchmark Overview« [L11]. 

 

SPECjbb2005 

The SPECjbb2005 benchmark [L12] is a JAVA-based benchmark and measures the performance of server-
side Java through the emulation of a 3-tier client/server system with the focus placed on the middle tier. See 
the document »SPECjbb2005 - Benchmark Overview« [L13] for a detailed description of this benchmark. For 
use as part of the benchmark framework vServCon the benchmark was modified according to the vServCon 
specifications. This includes cyclical sleep pauses, as otherwise the VM would on account of the absolute 
lack of I/O accesses with this benchmark use its full CPU time as allocated by the hypervisor and would thus 
show a rather untypical load profile for server applications in a VM. Therefore, no compatible result is 
generated, but merely a single indicator that provides information about the number of transactions made. 

The benchmark runs directly on the system and does not need any external load generators. 

 

SysBench 

Sysbench [L14] is an »Open Source« benchmark for databases that is available for a large number of 
different target platforms. 

SysBench is used as part of the vServCon framework. A version modified by Intel is also used here, and is 
based on Sysbench version 0.3.3. 

The benchmark runs directly on the system and does not need any load generators. 

http://www.iometer.org/
http://www.intel.com/technology/itj/2006/v10i3/7-benchmarking/6-vconsolidate.htm
http://docs.ts.fujitsu.com/dl.aspx?id=b953d1f3-6f98-4b93-95f5-8c8ba3db4e59
http://www.spec.org/jbb2005
http://docs.ts.fujitsu.com/dl.aspx?id=5411e8f9-8c56-4ee9-9b3b-98981ab3e820
http://sysbench.sourceforge.net/
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WebBench 

The benchmark WebBench 5.0 [L15] is a benchmark used to determine the performance of a web server in 
a client/server environment. Client PCs are used here to simulate web browsers, which send requests to the 
web server and log performance-relevant access information after receipt of the data. 

 

Measurement environment 
 
Depending on the benchmark used it is necessary to define a suitable VM. If a native system is measured as 
a comparison, an identical CPU/RAM configuration must be established by means of appropriate parameters 
in the configuration of the grub-boot loader and »boot.ini« respectively. 

Iometer 

Number of CPUs 1 core 

Available RAM 1536 MB 

Disk subsystem FibreCAT CX500 
RAID0 made up of five 36 GB hard disks with 15,000 rpm 

Operating system Microsoft Windows 2003 R2 Enterprise x64 Edition (SP2) 

SPECjbb 

Number of CPUs 2 cores (if possible) 

Available RAM 2 GB 

Disk subsystem FibreCAT CX500 
RAID0 made up of five 36 GB hard disks with 15,000 rpm 

Operating system Microsoft Windows 2003 R2 Enterprise x64 Edition (SP2) 
SLES10 SP1 64-bit (preferred) 

Application BEA JRockit R27.2.0 

SysBench 

Number of CPUs 2 cores (if possible) 

Available RAM 1536 MB 

Disk subsystem FibreCAT CX500 
RAID0 made up of five 36 GB hard disks with 15,000 rpm 

Operating system Microsoft Windows 2003 R2 Enterprise x64 Edition (SP2) 

Application Microsoft SQL Server 2005 

WebBench 

Number of CPUs 1 core 

Available RAM 1536 MB 

Disk subsystem FibreCAT CX500 
RAID0 made up of five 36 GB hard disks with 15,000 rpm 

Operating system SLES10 SP1 64-bit 

Application Apache 2 

 

 

http://www.lionbridge.com/lionbridge/en-us/services/outsourced-testing/benchmark-software.htm
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Performance Analyses 

Every access to and from the virtual machine must pass through the virtualization layer. The task of this layer 
is to interpret and convert the I/O operations. All processor, memory, disk and network accesses are from the 
host’s viewpoint converted for the virtual machine. Conversely, all accesses from the virtual machine to the 
host must also be converted. 

This »transformation« costs computing performance and thus also computing time. The following 
performance analyses are intended to provide information about the extent to which this virtualization under 
XEN/SLES10 affects the performance of the virtual machines. 

Below the four performance-relevant components 

 
 

CPU 
 

Memory Disk Network 

 
 
 
 

   

 
are first looked at individually, although CPU and memory are so interwoven that they are considered jointly. 
 

CPU and Memory 

The diagram opposite depicts 
the performance ratio between 
the different virtualization 
variants. The para-virtualized 
VM shows an excellent 
performance here with only 
1.2% loss in performance 
compared with a native system. 
With the fully virtualized VMs 
performance sinks by up to 
6.5%. 

The differences in performance 
between the individual forms of 
virtualization stem from memory 
management. From the view of 
the hypervisor, memory 
management for a para-
virtualized VM is considerably 
easier and thus quicker to 
handle than for a fully virtualized 
VM. Furthermore, the kernel 
mode share also has a 
performance-reducing influence in the fully virtualized VMs, because despite the use of the special 
virtualization functions of the processors the execution of code in the kernel mode represents considerably 
more outlay in full virtualization for the hypervisor than when implemented in user mode. Depending on the 
kernel mode share of an application it is also possible for significantly larger deviations to occur. The 
influence of the kernel mode shares can also be clearly seen in the comparison of the 'FullEx' VM and the 
'Full' VM. The 'FullEx' VM, which only differs from the 'Full' VM through the use of the para-virtualized disk 
and LAN drivers, performs 2.3% better, because the kernel mode shares are reduced as a result of the 
special disk and LAN drivers. 
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For memory-intensive applications, however, a larger discrepancy may result between the performance of a 
native system and the VM if they use the operating system option »large pages«, which by means of a single 
page table entry enables large contiguous parts of the physical memory to be addressed. As regards 
memory fragmenting, the standard »small pages« is usually the appropriate choice. However, for memory-
intensive applications, such as Oracle Database, the option »large pages« is an important means of 
optimization. Unfortunately, however, XEN does not support any »large pages«, it merely offers an 
emulation. An application that profits from »large pages« will therefore show a considerably larger loss in 
performance in a VM, as is illustrated in the diagram below. 

 

 
The CPU/memory analyses 
were performed with a modified 
version of the SPECjbb2005 
benchmark. Both the native 
system and the VMs each 
consisted of a CPU core, 2 GB 
RAM and were run with SLES10 
SP1 64-bit. In the case of the 
native system an identical 
CPU/RAM configuration was 
established by means of 
appropriate parameters in the 
configuration of the grub-boot 
loader. 
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Disk I/O 

Disk I/O is a complex structure. Not only are there various access patterns for disk I/O from sequential to 
random access, also with different block sizes and different parallelism, but also because the individual 
forms of virtualization implement different strategies in the handling of caches and in intervention in the I/O 
flow. Therefore, it is necessary to firstly deal with these features of the implementation under XEN prior to the 
analysis of disk-I/O behavior. 

 

I/O Scheduler 

Eminent importance is attached to the I/O schedulers in the disk-I/O structure of Linux, every I/O operation 
passes through them. The task of the I/O schedulers is to »optimize« the processing of I/O operations. What 
happens during this optimization depends on the respective I/O scheduler; in this way it is e.g. possible to 
put several I/O operations together to form a single one. Intensive use is made of this feature in connection 
with the system cache. Individual I/O schedulers also perform a re-sorting of the I/O operations based on the 
sectors addressed on the disk so as to minimize any unnecessary movements of the write/read heads. Here 
we are dealing with a functionality that not only provides powerful storage systems, but also modern SATA 
HDs (Native Command Queueing). Since it is hardly possible to optimally support all load scenarios with one 
individual I/O scheduler design, Linux makes a total of four different I/O schedulers available. The fact that 
the I/O schedulers can be individually set for every disk is an important feature especially for the connection 
of storage systems, because their internal attempts at optimization capable of being impeded through the 
optimization of the I/O schedulers. Under this aspect the »cfq« scheduler and the »noop« scheduler were 
looked at more closely as part of this document. 

The »noop« scheduler is the simplest of the four I/O schedulers. Except for consolidating the individual I/O 
operations, it implements no further optimization. The »cfq« scheduler is in this regard clearly more complex, 
for example it is in a position to sort I/O operations on the basis of sector addresses. The »cfq« scheduler is 
the standard I/O scheduler under SLES10. The diagram shows that in a configuration with only one Iometer 
worker (that is a load-generating 
thread) the I/O schedulers in the 
Dom0 have no great influence on 
performance. Unlike 'FullEx' VM, 
here the »noop« scheduler 
achieves decidedly better results. 

If the measurement structure is 
modified to the effect that two 
Iometer workers generate the 
same load in parallel on the same 
physical disk, the better 
performance of the »noop« 
scheduler can also be seen in the 
Dom0. The »noop« scheduler is in 
a position to significantly increase 
throughput both in the Dom0 and 
in the VM. On the other hand, with 
the »cfq« scheduler the overall 
throughput of the Dom0 sinks on 
account of the second Iometer 
worker - even below the 
throughput that was previously achieved by a single Iometer worker. However, the VM can on account of the 
second Iometer worker at least draw level with the Dom0 and is thus somewhat better than before with only 
one Iometer worker. 
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The two series of measurements show that at least in connection with a powerful storage system the 
»optimizations« of the I/O schedulers seriously influence performance. The simpler »optimizations« of the 
»noop« scheduler consequently have a decidedly better performance here. In this regard, it is advisable to 
always use the »noop« scheduler and particularly with Linux-based VMs to avoid optimizations in a second 
place through its internal I/O schedulers. 

When examining the I/O schedulers one discrepancy occurred in SLES10. Although the »cfq« scheduler 
should be enabled as standard, with it the throughput of the »noop« scheduler is always achieved directly 
after booting. Only after a different I/O scheduler has been set or the »cfq« scheduler, which has actually 
already been set, has been overwritten, does it show typical throughput values. In this respect, doubt must 
be expressed as to whether the »cfq« scheduler indicated is really the standard scheduler. 

 

System cache of the Dom0 

The system cache buffers both read and write accesses and can use the entire free memory of the Dom0 for 
this purpose. Tests with »iostat« suggest that write for the modified cache pages is only effected on a time-
dependent basis to a limited extent and primarily through displacement. Thus, for example in an Iometer 
measurement within a VM, it could be seen that according to »iostat« virtual disk areas written by Iometer 
were also actually written onto the physical disk only one hour after the measurement. This cache behavior 
is not transparent for the VMs and with regard to data integrity is even unwanted if the host were to have an 
emergency power supply (in the event of a Dom0 crash the data written in the VM by the application has not 
yet been passed on to the physical disk). Generally, the cache is more counterproductive than useful during 
virtualization, because the VMs also implement a cache at least on the level of their operating system and 
thus two independent instances possibly have the same data in their cache. This represents an additional 
overhead and accordingly results in losses in performance. 

Both para-virtualized VMs and fully virtualized VMs with the Novell driver pack are affected by the Dom0 
system cache when their virtual HDs are mapped onto a file within the host file system. With other 
configurations (e.g. a virtual HD on one partition) they can avoid the Dom0 system cache. 

For fully virtualized VMs without the Novell driver pack this unfortunately does not work, here the cache must 
mostly be accepted. However, mostly does not mean completely, at least Windows VMs can influence the 
»spontaneity« with which write is effected. This is possible by disabling the write cache within the VM for the 
virtual IDE HDs. Consequently, write operations are performed by the Dom0 in a decidedly more 
spontaneous way (as can be seen with »iostat« based on the increased write accesses). Therefore, risks 
with regard to data integrity can be reduced, but not eliminated. 

This shows how thoroughly important the Novell driver pack is for fully virtualized VMs. Only with this 
package is it possible to force a fully virtualized VM to bypass the cache, therefore it should not be regarded 
as an option, but - inasmuch as it is available for a certain operating system - more as mandatory. 

When comparing the forms of virtualization the following cache variants are considered for the fully 
virtualized VMs: 

Full (min. SC / DC on) System cache minimized, 
Write-back cache of the emulated IDE disk enabled 
(standard setting for Windows) 

Full (min. SC / DC off) System cache minimized, 
Write-back cache of the emulated IDE disk disabled 

Full (max. SC / DC off) Write-back cache of the emulated IDE disk disabled. 
 
Consideration of the setting »(min. SC / DC off)« is given preference below. This setting provides the most 
realistic performance values, because it reflects the situation of a host with a high load with regard to the size 
of the system cache and also minimizes the danger of data loss during write as a result of a crash. 
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Measurement environment 

All the tests concerning disk I/O were performed in a VM and in a native system of the following 
configuration: 

Number of CPUs 1 core 

Available RAM 1536 MB 

Operating system Microsoft Windows 2003 R2 Enterprise x64 Edition (SP2) 

Windows was selected as the operating system, because both the operating system and the measuring tool 
Iometer under Windows are known to support asynchronous disk I/O. Problems of the virtualization layer or 
the host with asynchronism would be provable in this way. 
 
To determine the data throughput we will consider the following access patterns (in Iometer: »Access 
specification«): 

Access pattern Block sizes Read/Write share Random 
share 

Queue 
depths 

Sequential 
Read/Write 

512 B (minimum) to 
64 kB (maximum) in 
steps to the power of 2 

100% write with all block 
sizes; then 100% read with 
all block sizes 

0% 1,2,4,8,16 

Database 8 kB 67% Read, 33% Write 100% 1,2,4,8,16 

File server 64 kB 67% Read, 33% Write 100% 1,2,4,8,16 

The detailed dependencies of the virtualization overhead with the disk-I/O data throughput on the form of 
virtualization, on the access profiles and on the system cache variants are relatively complex so that they 
need to be examined and discussed step-by-step in the following sections. 
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Asynchronism 

This series of measurements 
examines the influence of queue 
depth, that in other words is the 
parallelism of I/O accesses. 

The diagrams opposite show 
examples of data throughput for 
sequential write with 16 kB block 
size. 

If you look at the first diagram, 
which shows the data throughput 
with an increasing queue depth, 
you can see that the data 
throughput for the VMs of the two 
measured forms of virtualization 
does not increase with queue 
depth, but is stagnating. The same 
applies for the Dom0 (and would 
also be seen for a native SLES10). 
For queue depth 16 the native 
W2K3 throughput with 141 MB/s is 
almost maximum throughput, 
whereas the 'FullEx' VM with 
22 MB/s achieves just under 15% 
of the native throughput. This is 
relatively dramatic, since modern 
storage systems depend on an 
asynchronous supply of I/O 
requests in order to compensate 
their higher latency and utilize the 
bandwidth of the disk connection. 

In the second diagram, which 
represents the response time, you 
see that the latter increases almost 
on a linear basis with queue depth 
for the 'FullEx' VM. Iometer 
calculates response time from the 
point in time immediately before 
generation of the I/O operations. 
Waiting times within Iometer's own 
loop logic are not included. Thus 
the response times that increase 
on a linear basis with queue depth 
prove that the asynchronous 
requests are transferred 
completely asynchronously from 
the I/O layer both within the VMs 
and in the Dom0, without blocking 
the caller Iometer. Therefore, 
serialization of the I/O orders must 

take place in a later step, as a result of which a request tailback occurs. 

Very similar behavior results if - instead of sequential accesses - typical access patterns of a file server and a 
database server with block sizes of 64 kB and 8 kB respectively and in each case random accesses with 

1
/3 

write and 
2
/3 read share are considered. »noop« is recommended as the I/O scheduler for all VMs (see 

section »IO Scheduler«). 
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The throughput of a native system 
with Windows Server 2003 starts at 
a queue depth of 1 with 15.8 MB/s 
and increases by queue depth 16 to 
94.6 MB/s; in other words it makes 
clear use of the scope of the 
asynchronous I/O. Dom0 and a 
'FullEx' VM also start at queue 
depth 1 with about 16 MB/s, but 
show no increase in throughput as 
queue depth rises. The 'Full' VM 
starts with 5 MB/s and shows 
almost no increase in throughput 
with rising queue depth. The effects 
here are in principle the same as 
with sequential accesses with the 
data throughput generally being 
somewhat lower for random 
accesses than for sequential 
accesses. 

 

The response times for the four 
situations being considered are for 
queue depth 1 as calculated from 
the data throughputs. In other 
words, for the native measurement, 
for Dom0 and for the 'FullEx' VM 
they amount to 3.9 ms, and the 
highest value with 12.4 ms is for 
the 'Full' VM. 

In all cases - except for the 'Full' 
VM - the response time then 
increases as calculated from queue 
depth and throughput, in other 
words it is the greatest for the 
'FullEx' VM at queue depth 16. 

However, with the 'Full' VM the 
response time for a higher queue 
depth is in contrast to the 
throughput implausible, because it 
remains approximately constant 
despite rising queue depth (that is 
to say more requests for the same 
disk). 

As regards quality all the statements are just as applicable for the access pattern of a database with a block 
size of 8 kB in comparison with 64 kB with the file server - this is why they are not depicted in a separate 
diagram. Quantitative differences are on account of the smaller block size not quite so pronounced. 

 

This shows that although a VM is always in a position to control a VHD asynchronously (proven by the linear 
increase in mean response time with growing queue depth), a kind of »serialization« takes place at a later 
level, through which the originally asynchronous I/O operations are only transferred to the storage system 
synchronously. 
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Not only are the VMs affected by 
this »serialization«, but also 
programs that run within the Dom0 
and on a native SLES10 and 
asynchronously generate their I/O 
operations from an individual 
thread. However, as section »IO 
Scheduler« shows they have the 
option of achieving a certain 
parallelism of I/O operations by 
generating the I/O operations with 
several different threads instead of 
from one thread only. The VHDs of 
the VMs always have such a 
thread; for each VHD a dedicated 
kernel thread is generated in the 
Dom0, which performs the I/O 
operations in an acting capacity for 
the VMs. It must therefore be 
assumed that »serialization« takes 
place on the level of a Dom0 
thread. This assumption is in princi-
ple confirmed by the fact that a VM 
can achieve an increase in 
throughput in a similar way to the 
Dom0, by working in parallel on 
different VHDs and consequently 
using several »VHD threads« 
indirectly. Here the VHDs may also 
be on the same physical disk. At 
the same time this excludes the 
physical disk as a serialization 
criterion. 

The result of this is the 
recommendation for applications 
sensitive to disk I/O to distribute the 
disk load over several VHDs if 
possible. In order to simplify the 
application configuration these 
VHDs could for example be consolidated to form a single logical disk by means of a SW-RAID as a striping 
set (RAID0). 
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Data throughputs 

We will now consider the influence of block sizes for disk I/O. As we have already learnt before that XEN 
serializes all the I/O requests, it is sufficient to consider a queue depth of 1, although with a native system 
the maximum throughput only becomes possible with higher queue depths. 

In the first diagram, which shows 
throughput against block size, it 
can be clearly seen that the native 
system has the best throughput for 
all block sizes. The throughput of a 
'FullEx' VM increases somewhat 
more slowly and with block size 
16 kB and higher runs at a 
constant distance of about 6 MB/s 
below the native system. 
Up to block size of 4 kB throughput 
increases for the fully virtualized 
VM to the same degree as the 
native W2K3. With higher block 
sizes there is almost no further 
increase in throughput. 

And with the response time the 
native system also has the best 
values, namely the lowest ones. 
For the block size of 512 Bytes a 
pure response time of 0.41 ms is 
measured for the native system 
(that is the typical write latency of 
the storage system used) 

compared with about 0.46 ms for a 'FullEx' VM. Here you can clearly see the additional time required to pass 
through the virtualization layer, 
because the influence of block size 
can be ignored at 512 Byte. As the 
block size rises, you can see a 
slight increase in the response 
times for 'FullEx' and 'Native'. The 
distance between the two response 
time curves grows to about 0.1 ms. 

With 'Full' (»min SC / DC on«) 
additional read operations are 
observed for small block sizes up 
to 2 kB and as a result an 
additional 0.16 ms in the response 
time. Above 4 kB block size the 
response time increases rapidly, 
which fits precisely with stagnating 
throughput. Both peculiarities of 
the 'Full' VMs are caused by the 
special way the IDE disk emulation 
works. With an disabled disk cache 
in the VM this emulation always 
performs the write operations to 
the physical disk in 4 kB blocks. 

For orders from the VM with smaller block sizes this means that they have to be complemented to 4 kB 
through read from the disk. With block sizes more than 4 kB the blocks are broken down into portions of 4 kB 
each and these are then written in serialized form. This explains the drastically increasing response times. 
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And now the behavior with sequential read is to be considered. Here we will also be satisfied with a queue 
depth of 1, although a native system that supports parallelism would achieve a considerably higher 
throughput. 

With smaller block sizes of less 
than 8 kB 'FullEx' and 'Full' are 
firstly at a disadvantage in relation 
to the native W2K3. For example, 
with 4 kB the throughput for the 
two VM types is only half as large 
as with the native system. Then 
read throughput increases with 
block size, but levels out with 
higher block sizes approximately 
like the shape of the square root 
function. With block size 16 kB and 
higher the curve of the read 
throughput for 'FullEx' runs at a 
constant distance of about 4 MB/s 
below the data throughput of the 
native system. 

With the 'Full' VM and block size of 
about 20 kB and higher we can 
see for all three cache variants a 
stronger, almost linear growth in 
read throughput that is quantitively 
dependent on block size up to 
about 110 MB/s compared with a 

maximum of 70 MB/s for the native system. On the storage system it could be verified that the 'Full' VM 
reads with a queue depth > 1, although the original I/O request in the VM only has queue depth 1. With read 
I/O this is a sensible optimization action of the XEN disk I/Os. Read-Ahead caching cannot be excluded, 
either. Consequently, a higher read throughput is achieved for queue depth 1 (but not for the relevant larger 
queue depths) than with a native system, which does not autonomously implement such optimizations. 

For the response times the 'FullEx' 
VM and 'Full' VM do not come 
below a response time of 0.38 ms 
for small block sizes, whereas with 
the native system this is at best 
only about 0.13 ms. With about 
16 kB and higher the response 
time curve for the 'FullEx' VM runs 
at a constant distance of about 
0.05 ms above the curve of the 
native system. For the 'Full' VM 
the response time curve is very 
flat, the times only deteriorate from 
0.44 ms to 0.57 ms. And 
mathematically, this is clear due to 
the almost linear course of the 
throughput curve. 
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Sequential write with full virtualization faster than with native? 

It can already be seen above in the 
throughput curve of the 'Full' VM 
for sequential read that the 'Full' 
VM has a higher throughput than 
the native system for large block 
sizes. With sequential write from a 
'Full' VM, cache variant »min. SC / 
DC on«, queue depth 1, a similar 
effect occurs: for block sizes above 
16 kB the »virtual« throughput 
overtakes the »native« throughput 
and is at 64 kB apparently 80% 
higher. 

In contrast to read accesses, in 
which caching can have a positive 
impact on throughput, caching with 
write accesses, as is the case here 
due to the system cache of the 
Dom0, is not always desired 

because it can endanger data integrity. This should be taken into account in performance comparisons 
between forms of virtualization. 
 

Maximum data throughputs with queue depth 1 

The following table shows the maximum data throughputs in MB/s achieved with queue depth 1. They were 
all achieved with sequential disk I/O via Iometer with a 64 kB block size. The maximum achievable 
throughput (as a result of a higher queue depth) for the storage system used is 152.7 MB/s (write) and 
173.1 MB/s (read). The value marked with an asterisk (*) in the table is not real, because in this case the 
data is merely in the system cache of the Dom0 (see above). 

Disk I/O 
direction 

Native W2K3 ‘FullEx’ VM ‘Full’ VM 

min. SC / DC off min. SC / DC on max. SC / DC off 

Write 63.6 57.4 11.8 (*) 110.8 11.8 

Read 70.4 65.9 109.9 109.8 118.4 
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Database server application scenario 

On account of the missing parallelism the VMs only achieve a similar throughput to the native system with 
queue depth 1, in other words without parallelism. In reality, however, this must not have such an extreme 
impact, because for example with a server application the I/O operations are frequently the consequence of 
a superior, possibly CPU-intensive transaction. Merely as a result of this a considerably more favorable load 
profile can arise for the disk-I/O subsystem. However, a cache within the VM that is possibly managed by the 
system or by an application can also have a positive influence on load behavior. 

Therefore, we will consider a typical database application, as represented by the benchmark SysBench. For 
this purpose, we will compare the VMs and the native system with the following configuration 

Number of CPUs 1 core 

Available RAM 1536 MB 

Operating system Microsoft Windows 2003 R2 Enterprise x64 Edition (SP2) 

Database Microsoft SQL Server 2005 

Benchmark SysBench 0.3.3 

 

With the native system the configuration was established via appropriate parameters in the configuration of 
the boot loader (boot.ini) of Windows. 

The diagram opposite shows 
that in a complex application 
environment the missing 
parallelism has a considerably 
less serious impact than is the 
case with pure I/O load 
measurements. One reason for 
this is that very effective 
caching takes place within the 
VMs in the application scenario. 
This only becomes evident 
through analysis of the I/O 
requests. SysBench generates 
disk I/O with a read share of 
60%, but according to »xentop« 
only 3% of the disk-I/O 
operations are read operations 
in the Dom0, the missing 
operations are consequently 
satisfied from the cache. 

In this way, the VMs profit from 
the fact that the missing 
parallelism is only enforced by the serialization that takes place later in the Dom0 and that they are thus still 
in a position to initiate the I/O operations asynchronously. With a converse read:write ratio this would have 
had a stronger negative impact, the VMs would then have been obliged to wait for the read data. Since 
according to both »xentop« and the Windows Performance Monitor the utilization of the VMs is also 100% in 
all variants and in addition the Windows Performance Monitor only shows a mean disk queue depth of 0.3, it 
can be assumed that with this load profile the missing parallelism is not the reason for the significant losses 
in performance compared with the native system. 

The behavior of the 'Full' VMs is remarkable. They generally show lower performance levels, but the fact that 
precisely the configuration with a large Dom0 cache offers the lowest performance is an indication that 
caching in the Dom0 is with regard to performance then at least counterproductive when effective caching 
also takes place within the VM. 
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Network 

After disk I/O we will now deal with the other important I/O component - the network. Maximum possible data 
throughput is also to be considered first here and in a further analysis the consequences are to be examined 
in a real application scenario. 

The three forms of virtualization 'Full', 'FullEx' and 'Para' as well as a native system are to be considered 
here. The VMs were identically configured as follows: 

Operating system SLES10 SP1 64-bit 
Number of CPUs 1 core 
Available RAM 1536 MB 

An identical configuration was established for the native system via appropriate parameters in the configu-
ration of the grub-boot loader. 

Data throughput 

Iometer was used to determine data throughput. Here an Iometer instance on the system to be measured 
(SUT) exchanges data with different block sizes with a second Iometer instance on a separate system. 
As with disk, network throughput also 
very much depends on the type of 
operation, that is to say whether data is 
sent or received. If you consider the write 
case (SUT sends), the native system 
achieved the maximum possible data 
throughput as early as with a block size 
of 2 kB. With 1 kB this would not have 
been possible due to the physics of the 
underlying network. Both the 'FullEx' and 
the 'Para' VM are also in a position to 
achieve the maximum throughput, even 
though slightly delayed for block size 
4 kB and higher. The behavior of the 
'FullEx' VM is remarkable; despite full 
virtualization it shows a better 
performance in the range below 4 kB, 
and a considerably better performance 
than with the para-virtualized VM for 
2 kB. In return, throughput declines by up 
to 10% with 16 kB. With only 7 MB/s the 
performance of the 'Full' VM remains way below the maximum possible throughput of 111 MB/s. 

If you consider the read case (SUT 
receives), the throughput of the native 
system is also clearly reduced compared 
with the write case. 'Full' VM is the 
exception - here it clearly shows better 
throughputs than for write. However, it still 
does not achieve the lowest throughput 
value of the other systems. Here the 
'FullEx' VM now shows a performance 
behavior very similar to that of the 'Para' 
VM. Both the 'FullEx' and the 'Para' VM 
can with a block size of 64 kB provide the 
same throughput as the native system; 
however, considerable differences can be 
seen in the range below 32 kB. 
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With network throughput also depends on 
the implementation of the TCP/IP stacks 
of the communication partners. The 
above data throughputs were determined 
against a system with Microsoft Windows 
2003 R2 Enterprise x64 Edition (SP2). A 
somewhat different behavior results with a 
counterpart based on a 32-bit Linux 
SLES10 SP1. Although in this case only 
lower throughput was achieved in the 
write case (SUT sends) with block sizes 
below 4 kB than with the Windows 
counterpart, the throughput in the read 
case (SUT receives) nevertheless rose 
clearly in this range Furthermore, both the 
'FullEx' and the 'Para' VM showed better 
throughput than the native system in this 
range. Unlike with a Windows 
counterpart, the 'Para' VM with a Linux 
counterpart generally achieved better 
throughput than the 'FullEx' VM. 
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Web server application scenario 

The analyses of the network data throughput certify a performance for both the 'FullEx' and the 'Para' VM 
that is of a virtually native level for write operations. However, load generation was effected without the time 
and effort involved in a server application on account of superior transactions. In order to assess the 
performance behavior of an application a typical web-server environment is considered on the basis of 
Apache 2 and of the »WebBench 5.0« benchmark [L15]. 

The following diagram shows the relative web throughput of the VMs related to the native system. It shows 
that very considerable losses in performance result in the web-server environment independent of the form 
of virtualization. On account of the data throughput measurements this was to be expected for the 'Full' VM, 
but not for the 'FullEx' and the 'Para' VM. The cause for the clear losses lies in the definition of the 
WebBench load profile. This defines that 16% of all HTTP requests and 2% of all HTTP-SSL requests on the 
web server start a CGI program. However, the start of a process within a VM is on account of the 
virtualization of the MMU (Memory Management Unit) considerably more complex than on a native system. 
To illustrate the impacts the measurements were therefore performed with the standard profile and a 
modified profile without the 16% HTTP-CGI requests. With the standard profile the 'FullEx' VM only achieved 
a relative throughput of 15%, the 
'Para' VM nevertheless achieved 
57.4%. With the modified profile 
the 'FullEx’ VM was now on the 
contrary able to increase its relati-
ve throughput very clearly to 
41.3%, but is still a long way off 
from the 'Para' VM, which was 
able to improve its relative 
throughput to 72.5%. The clear 
gap that still exists to the native 
system can be explained by the 
transfer sizes of the HTTP 
requests. According to the mo-
dified profile 31% of all accesses 
required files with a size of less 
than one kilobyte, for a further 
17% of accesses the file size was 
below 2 kB. However, with the 
data throughput network 
measurements both the 'FullEx' 
and the 'Para' VM already 
showed a 2.7-fold smaller throughput with such transfer sizes than the native system. 



 White Paper  Performance Report | XEN (SLES 10)  Version: 1.1, March 2008 

 © Fujitsu Technology Solutions 2009 Page 26 (31) 

 

Scaling 

After intensively discussing the performance of a single virtual machine in the previous sections, the overall 
performance of several VMs running simultaneously on the same physical system is now to be considered. 
Of special interest here is the development of performance when the load caused by the VMs is increased 
step-by-step. This functional relation is designated in the context of virtualization as »scaling«. 

In order to determine scaling the benchmark kit vServCon [L10], [L11] was used, in which one or more sets 
(also known as »tiles«) of application benchmarks are run in parallel and their overall performance 
(expressed as a »score«) is determined. 

A tile is made up of three VMs, which reflect the following application scenarios: 

Java server simulated by the benchmark SPECjbb2005 

Database server simulated by the benchmark SysBench 

Web server simulated by the benchmark WebBench 

Identically configured, these have in each case already been used for the measurements of the application 
scenarios. A virtual CPU was allocated to each VM; 2048 MB of memory was allocated to the Java VM and 
1536 MB respectively to the other two VMs within a tile. 

For each form of virtualization performance was determined with a load with one, two and three tiles. 

On account of the test platform with eight physical cores overall good scaling is to be expected in the 
measurements with two tiles, because eight native CPU cores are available for the total of six necessary 
virtual CPUs. On the other hand, a genuine overload situation is to be expected with three tiles, because on 
the one hand a native CPU core is already missing due to the CPU configuration of the VMs and, in addition, 
a considerable CPU load in the Dom0 has to be overcome on account of the I/O activities of the VMs. The 
following diagrams with the measurement results confirm this presumption precisely. As long as sufficient 
system resources are available, good performance scaling can be observed. Depending on the form of 
virtualization scaling is between 1.8 and 1.9 for two tiles. However, if a configuration exists, in which more 
virtual resources are planned than are physically available, competitive displacement arises and scaling in 
the case of three tiles is only between 2.2 and 2.5. 

The following diagrams show the scaling for different forms of virtualization and application scenarios in 
detail. In addition to the scores for the complete tiles, the diagrams also show the pro-rata scores for the 
three types of VMs (Java server, database server and web server). As a means of orientation for scaling 
quality dashed lines, which would represent ideal linear scaling of the overall and pro-rata scores, are drawn 
through to zero. 

Independent of the form of virtualization, the Java server shows the best ability for scaling, followed by the 
database server. The web server reacts most sensitively to resource bottlenecks. The worse scaling 
behavior of the I/O-dependent VMs, database server and web server, compared with the JAVA servers for 
the three tiles has the following reason: in addition to a shortage in their direct CPU resource, the former 
suffer from the virtualization-specific and general consequential effects of increased I/O orders. 
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As expected, for fully virtualized VMs 
the scaling behavior of the I/O-
dependent VMs with three tiles is the 
worst compared with the JAVA 
servers. The relative score of the 
database server and web server VMs 
hardly increases any further from two 
to three tiles. The reason is the in 
comparison highest overhead of this 
form of virtualization. 

 

 

 

 

 

 

With the 'FullEx' VMs the scaling 
behavior improves considerably on 
account of the Novell driver pack and 
effectively reaches the level of the 
para-virtualized VMs. With three tiles 
saturation level begins to appear. All 
three server types show 
approximately the same scaling 
behavior. 

 

 

 

 

 

 

 

A series of measurements with para-
virtualized VMs only is not possible on 
account of the database VM based on 
Windows. To at least achieve 
complete para-virtualization for I/O the 
fully virtualized database VMs were 
used together with the Novell driver 
pack. Despite this restriction a good 
scaling relationship of 1.87 is still 
achieved with two tiles. The leveling-
off of the curve with three tiles to 2.47 
was to be expected on account of the 
shortage of CPUs. Of particular note 
in this measurement is the greater 
decline in performance in the para-
virtualized web VMs compared with 
the only fully virtualized database 
VMs. 
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Overall performance of VMs dependent on the form of virtualization and the number of tiles 

The diagram opposite compares both 
the scaling and the performance of 
various forms of virtualization. For the 
purpose of comparability relative 
scores, which are related to the score 
of an individual »Para« tile, are 
provided. 

This comparison is in this respect 
important, because in server 
consolidation several virtual servers 
are migrated to one physical server. 
You can see from the diagram that the 
score difference between one 'Full' tile 
and one »Para« tile is 43%. In the 
event of three 'Full' tiles compared 
with three »Para« tiles the difference 
grows to 49%. Compared with the 
43% for one tile, the 49% for three 
tiles includes both influences, namely 
the difference in the virtualization 
forms in themselves and the different 
scaling. 
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Influence of idle VMs 

Idle VMs - in other words VMs that run without a real »workload« - also represent a load for the virtualization 
layer, because they nevertheless take part in normal scheduling and accordingly have to receive CPU time 
assigned by the scheduler of the 
virtualization layer on a regular 
basis. As a consequence, the 
VMs which are subject to load 
show reduced throughput. The 
diagram opposite shows how 
the score of a single active tile 
changes if six idle VMs also run 
completely unloaded. In 
comparison with the 
measurements without the 
»idle« VMs, losses in 
performance can be seen in all 
forms of virtualization. With the 
fully virtualized VMs ('Full') the 
score of the active tile is clearly 
reduced by 5.9% (0.98%/VM) 
compared with the tile that was 
measured without the idle VMs. 
If the Novell driver pack is used 
('FullEx'), the score reduction is 
halved (0.48%/VM). This is 
remarkable inasmuch as the 
additional VMs performed no apparent I/O activities at all and thus it must be assumed that the unavoidable 
I/O background activities of the operating systems within the VMs are already responsible for the 
considerably higher losses of the fully virtualized VMs. The measurement with the para-virtualized tiles has 
the lowest score reduction with only 1.4%. With this measurement it was not possible on account of the 
Windows-based database VMs to measure only para-virtualized VMs. With due regard to the two 'FullEx' 
database VMs the share in this case of the four para-virtualized VMs of the score reduction is only 0.43 
(0.11%/VM). 
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Summary: 

The performance of a VM under XEN depends a lot more on the type of application scenario than with a 
native system, especially with regard to I/O. On account of the distinct differences in I/O performance 
between a native system and a VM the field of operation for XEN lies in the server consolidation of older 
existing systems. For the virtualization of current high-load servers, especially those with a high disk load, 
the performance analyses have shown that XEN is less well suited in this regard. 

Both from a performance view and with regard to data integrity it is advisable to always configure VMs in 
such a way that their virtual hard disks bypass the system cache. When using full virtualization this is only 
possible in connection with the add-on product »Novell Driver Pack«; use of this pack should not be ignored, 
because a fully virtualized VM otherwise already has considerably higher CPU requirements in an idle state. 

In some cases, it is possible to observe better I/O measurement values in a VM than with the native system 
with synthetic benchmarks. The reasons for this are on the one hand cache effects that arise in the overall 
not-to-be-recommended situation of a fully virtualized VM without a driver pack, and on the other hand the 
support of the VMs through the decoupled functioning Dom0, which has additional CPU resources. However, 
this better I/O performance with VMs in certain cases should hardly affect complex applications, especially 
not if the resources for the Dom0 become more scarce due to the operation of several VMs. 

With disk I/O the I/O architecture of the Dom0 considerably influences performance. Applications that 
depend on really asynchronous processing of their I/O operations are less well suited for virtualization or 
should be supported with a specialized configuration of the virtual hard disks (e.g. SW RAID within the VM). 
Furthermore, more attention should be paid to the configuration of the I/O schedulers; the »noop« scheduler 
is as a rule the best suited scheduler. 

Whether an application with XEN can be sensibly virtualized also always depends on its run-time share in 
the kernel mode. Execution of code in kernel mode always causes an additional virtualization overhead 
compared with user mode; this particularly affects full virtualization (see section Web server application 
scenario). 

If it is possible with the operating system in the VM, a para-virtualized VM should be selected, as this always 
has the lowest overhead compared with the native operating system. 
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